Importance of the extracellular domain for prostaglandin EP(2) receptor function.

نویسندگان

  • B A Stillman
  • M D Breyer
  • R M Breyer
چکیده

The ligand binding pocket of biogenic amine G protein-coupled receptors is embedded in the membrane-spanning regions of these receptors, whereas the extracellular domains of the peptidergic receptors play a key role in the structure and function of this class of receptors. To examine the role of the extracellular sequences in prostaglandin receptor-ligand interaction, chimeras were constructed with the two G(s)-coupled E-prostanoid (EP) receptors, replacing each of the extracellular sequences of the human EP(2) receptor with the corresponding human EP(4) receptor residues. Replacement of the third extracellular loop (ECIII) yielded a receptor that binds [(3)H]prostaglandin E(2) (PGE(2); K(d) = 6.3 nM) with similar affinity as the EP(2) wild-type receptor (K(d) = 12.9 nM). Similarly, replacement of the nonconserved carboxyl-terminal portion of ECII resulted in a receptor that maintains [(3)H]PGE(2) binding (K(d) = 8.8 nM). In contrast, replacement of the amino terminus, ECI, the entire ECII region, or the residues within the highly conserved motif of the amino-terminal half of ECII yielded chimeras that displayed neither detectable [(3)H]PGE(2) binding nor receptor-evoked cAMP generation. Immunoprecipitation demonstrated that each chimera is expressed at levels near that of wild-type receptors; however, enzyme-linked immunosorbent assay revealed that inactive chimeras have reduced cell surface expression. Similarly, chimeras that exchange the multiple extracellular loop sequences N/ECI, ECII/ECIII, or all four sequences lacked detectable binding and signal transduction, and although expressed, were not detected on the cell surface. These data suggest that the extracellular sequences of the EP(2) receptor are critical determinants of receptor structure and/or function, unlike other G protein-coupled receptors that bind small molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recombinant Expression of the Non-glycosylated Extracellular Domain of Human Transforming Growth Factorβ Type II Receptor Using the Baculovirus Expression System in Sf21 Insect Cells

Transforming growth factor beta (TGFβ1, β2, and β3) are 25 kDa disulfide-linked homodimers that regulate many aspects of cellular functions, consist of proliferation, differentiation, adhesion and extracellular matrix formation. TGFβs mediate their biological activities by binding of growth factor ligand to two related, functionally distinct, single-pass transmembrane receptor kinases, known as...

متن کامل

In silico prediction of B cell epitopes of the extracellular domain of insulin-like growth factor-1 receptor

The insulin-like growth factor-1 receptor (IGF-1R) is a transmembrane receptor with tyrosine kinase activity. The receptor plays a critical role in cancer. Using monoclonal antibodies (MAbs) against the IGF-1R, typically blocks ligand binding and enhances down-regulation of the cell-surface IGF-1R. Some MAbs such as cixutumumab are under clinical trial investigation. Targeting multiple distinct...

متن کامل

Prostaglandin EP receptors: targets for treatment and prevention of colorectal cancer?

The importance of the prostaglandin (PG) synthesis pathway, particularly the rate-limiting enzymatic step catalyzed by cyclooxygenase, to colorectal carcinogenesis and development of novel anticolorectal cancer therapy is well established. The predominant PG species in benign and malignant colorectal tumors is PGE2. PGE2 acts via four EP receptors termed EP1 to EP4. Recently, EP receptors have ...

متن کامل

Restoration of renal function by a novel prostaglandin EP4 receptor-derived peptide in models of acute renal failure.

Acute renal failure (ARF) is a serious medical complication characterized by an abrupt and sustained decline in renal function. Despite significant advances in supportive care, there is currently no effective treatment to restore renal function. PGE(2) is a lipid hormone mediator abundantly produced in the kidney, where it acts locally to regulate renal function; several studies suggest that mo...

متن کامل

Prostaglandin E(2) regulates murine hematopoietic stem/progenitor cells directly via EP4 receptor and indirectly through mesenchymal progenitor cells.

Prostaglandin E(2) (PGE(2)) regulates hematopoietic stem/progenitor cell (HSPC) activity. However, the receptor(s) responsible for PGE(2) signaling remains unclear. Here, we identified EP4 as a receptor activated by PGE(2) to regulate HSPCs. Knockdown of Ep4 in HSPCs reduced long-term reconstitution capacity, whereas an EP4-selective agonist induced phosphorylation of GSK3β and β-catenin and en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 56 3  شماره 

صفحات  -

تاریخ انتشار 1999